
www.manaraa.com

Bridging Relational Database History and the Web:
the XML Approach

Fusheng Wang
Integrated Data Systems Dept
Siemens Corporate Research

Princeton, NJ 08540, USA
fusheng.wang@siemens.com

Xin Zhou
Teradata Division
NCR Corporation

Los Angeles, CA 90245, USA
xin.zhou@ncr.com

Carlo Zaniolo
Computer Science Dept

UCLA
Los Angeles, CA 90095, USA

zaniolo@cs.ucla.edu

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Management, Performance

Keywords
Temporal Database, XML Database, Temporal Grouping,
Temporal Query, XQuery

ABSTRACT
The preservation of digital artifacts represents an unan-
swered challenge for the modern information society: XML
and its query languages provide an effective environment
to address this challenge because of their ability to support
temporal information and queries, and make it easy to pub-
lish database history to the Web. In this paper, we focus
on the problem of preserving, publishing, and querying ef-
ficiently the history of a relational database. Past research
on temporal databases revealed the difficulty of achieving
satisfactory solutions using flat relational tables and SQL.
Here we show that the problem can be solved using (a)
XML to support temporally grouped representations of the
database history, and (b) XQuery to express powerful tem-
poral queries on such representations. Furthermore, the ap-
proach is quite general and it can be used to preserve and
query the history of multi-version XML documents. Then
we turn to the problem of efficient implementation, and
we investigate alternative approaches, including (i) XML
DBMS, (ii) shredding XML into relational tables and using
SQL/XML on these tables, (iii) SQL:2003 nested tables, and
iv) OR-DBMS extended with XML support. These exper-
iments suggest that a combination of temporal XML views
and physical relational tables provides the best approach for
managing temporal database information.

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’06, November 10, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-525-8/06/0011 ...$5.00.

There has been a great deal of recent interest on integrat-
ing traditional DBMS and XML, because of the significant
benefits for web applications expected from this integration.
But in addition to these general benefits, there are particular
problem areas for which unique technical benefits are gained
from this integration. In particular, temporal information
management represents an area for which there is much
pent-up application demand [1], but which has been diffi-
cult to support in the traditional database framework [2].
Indeed, most solutions proposed in the past require non-
trivial extensions to the SQL standards, and have not been
embraced by commercial vendors. However, the power and
flexibility of XML and its query languages make it now pos-
sible to achieve this objective without requiring extensions
to the standards, since (i) XML provides excellent support
for temporally grouped data models, which have been ad-
vocated as the most natural and effective representations of
temporal information [3], and (ii) unlike SQL, XQuery [4] is
natively extensible and Turing-complete [5], thus extensions
needed for temporal queries can be defined in the language
itself. These important points are illustrated through a num-
ber of examples in Section 3 and 4, whereas the rest of the
paper focuses on efficient implementation. We show that
many alternative implementations are possible for storing
and querying the XML-represented history of a relational
database, and that the performance delivered by the vari-
ous approaches can be significantly different.

Therefore, in Section 6, we study an approach based on
shredding XML into relational tables and using SQL/XML
on these tables. Then, in Section 7, we study the approach of
mapping XML into nested relations. Finally we compare the
performance of these approaches to that of using the native
support provided by the DBMS to store and query such
documents, including native XML DB discussed in Section
5, and OR-DBMS based XML DB discussed in Section 8.

2. RELATED WORK

2.1 Time in XML
Some interesting research work has recently focused on

the problem of representing historical information in XML.
In [6], valid time on the Web is supported by proposing a new
<valid> markup tag for XML/HTML documents, thus
temporal visualization can be implemented on web browsers
with XSL.

There are other approaches to support temporal XML
documents through extending XML data models or query
languages, such as extending XML data model or XPath to

www.manaraa.com

empno salary title deptno start end
1001 60000 Engineer d01 1995-01-01 1995-05-31
1001 70000 Engineer d01 1995-06-01 1995-09-30
1001 70000 Sr Engineer d02 1995-10-01 1996-01-31
1001 70000 TechLeader d02 1996-02-01 1996-12-31

Table 1: The snapshot history of employees

support temporal XML documents in [7], [8] and [9]. (In
our approach, we instead support XPath/XQuery without
any extension to XML data models or query languages.)

A τXQuery language is proposed in [10] to extend XQuery
for temporal support, which has to provide new constructs
for the language. An archiving technique for scientific data
was presented in [11]. The scheme proposed here presents
several similarities to that proposed in [11], but also provides
full support for XML query languages.

2.2 Temporal Databases and Grouped Repre-
sentations

There is a large number of temporal data models and
query languages, including [12, 13]; thus the design space
for the relational data model has been exhaustively explored
[2]. Clifford et al. [3] classified them as two main categories:
temporally ungrouped and temporally grouped data models.
The second representation has more expressive power and
is more natural since it is history-oriented [3]. TSQL2 [14]
tries to reconcile the two approaches [3] within the severe
limitations of the relational tables. Our approach is based
on a temporally grouped data model, which dovetails per-
fectly with the hierarchical structure of XML documents.

TimeDB [15] is a layered architecture that translates tem-
poral queries into RDBMS, where temporal data is repre-
sented as tuples with intervals, thus temporally ungrouped.
Flashback [16] and ImmortalDB [17] allow users to rollback
to old versions of tables (e.g., to correct errors), but they do
not provide complex temporal query support.

The use of XML in publishing and querying database his-
tory was previously proposed in [18]. No system implemen-
tation was however discussed in [18]. In this paper, instead,
we investigated four alternative solutions.

2.3 SQL:2003
In the implementation of our approach we make full use of

the latest SQL features. In particular, SQL:2003 standards
are similar to SQL:1999, but provide significant extensions
from SQL:1992 [19]. In particular, SQL:2003 O-R features
include multiset, nested collection types (supported by both
Oracle [20] and Informix [21]), and user-defined types. An-
other major feature is SQL/XML [22], which defines how
SQL can be used together with XML in a database, and is
supported by major database vendors. Publishing functions
provided by SQL/XML can directly construct query results
as XML documents or fragments, and a new XML type can
be used to store and query XML documents.

3. RELATION HISTORY IN XML
Table 1 describes the history of employees as they would

be viewed in traditional transaction-time databases [2] us-
ing a temporally ungrouped representation, where empno is
the key of the table and remains invariant in the history.

1001
1995-01-01:1996-12-31

empno

d02
1995-10-01:1996-12-31

Tech Leader
1996-02-01:1996-12-31

Sr Engineer
1995-10-01:1996-01-3170000

1995-06-01:1996-12-31

d01
1995-01-01:1995-09-30

Engineer
1995-01-01:1995-09-30

60000
1995-01-01:1995-05-31

deptnotitlesalary

1001
1995-01-01:1996-12-31

empno

d02
1995-10-01:1996-12-31

Tech Leader
1996-02-01:1996-12-31

Sr Engineer
1995-10-01:1996-01-3170000

1995-06-01:1996-12-31

d01
1995-01-01:1995-09-30

Engineer
1995-01-01:1995-09-30

60000
1995-01-01:1995-05-31

deptnotitlesalary

Figure 1: Temporally grouped history of employees

<employees tstart="1995-01-01" tend="1996-12-31">
<employee tstart="1995-01-01" tend="1996-12-31">
<empno tstart="1995-01-01" tend="1996-12-31">1001</empno>
<salary tstart="1995-01-01" tend="1995-05-31">60000</salary>
<salary tstart="1995-06-01" tend="1996-12-31">70000</salary>
<title tstart="1995-01-01" tend="1995-09-30">Engineer</title>
<title tstart="1995-10-01" tend="1996-01-31">Sr Engineer</title>
<title tstart="1996-02-01" tend="1996-12-31">Tech Leader</title>
<deptno tstart="1995-01-01" tend="1995-09-30">d01</deptno>
<deptno tstart="1995-10-01" tend="1996-12-31">d02</deptno>

</employee>
</employees>

Figure 2: The history of the employee table is pub-
lished as employees.xml

(In the remainder of this paper, our granularity for time is
a day; however, all the techniques we present are equally
valid for any granularity used by the application. For finer
granularity, techniques in [23] can be used. Furthermore,
throughout this paper, we assume that relation keys remain
invariant.) With this approach, any change in an attribute
value will lead to a new history tuple. The drawback for this
representation is that, i) redundant information is present
across tuples, e.g., the salary value “70000” is repeated in
the last three tuples; and ii) temporal queries need to fre-
quently coalesce tuples. Temporal coalescing is a source of
complications in temporal databases, which is complex and
hard to support in SQL. For instance, a temporal coalescing
query can take more than 20 lines of codes in SQL:1992, and
the best performance of coalescing on RDBMS is quadratic
[24].

These problems can be overcome or reduced using a repre-
sentation where the timestamped history of each attribute is
grouped under the attribute [3] (Figure 1), i.e., value equiv-
alent attribute histories are grouped if the intervals are adja-
cent or overlap. While this nested representation is hard to
be represented in a flat table, it can be naturally represented
by an XML-based hierarchical view shown in Figure 2. We
will call these H-documents (or H-views when these are vir-
tual representations). The root element in an H-document
represents the history of the corresponding table (i.e., the
creation and deletion time of a table), and its child elements
represent the grouped history of attribute values. Each el-
ement in an H-document is assigned two attributes tstart

and tend, to represent the inclusive time-interval of the el-
ement. The value of tend can be set to now, to denote the
ever-increasing current time. Note that there is a temporal
covering constraint that the interval of a parent node (table
history) always covers that of its child nodes (attribute his-
tories). The H-document also has a simple and well-defined
schema.

www.manaraa.com

Q1: Snapshot(single object): find the salary of employee
‘100002’ on 1993-05-16;

Q2: Snapshot: find the average salary of employees on 1993-
05-16;

Q3: History(single object): find the salary history of em-
ployee ‘100002’;

Q4: History: find the total number of salary changes;
Q5: Temporal slicing: find the number of employees whose

salary was more than 60K between 1993-05-16 and 1994-
05-16;

Q6: Temporal join: find the maximum salary increase over
a two years period after 04/01/2001;

Q7: Temporal join: find the manager’s empno for each em-
ployee;

Q8: Temporal join and snapshot: find the average salary in
dept ‘d001’ on 1990-01-01;

Q9: Temporal Join and snapshot: find the youngest em-
ployee whose current salary is more than 100K.

Table 2: Sample temporal queries on archived his-
tory

Our H-documents use a temporally grouped data model [3].
Clifford, et al. [3, 25, 26] show that temporally-grouped
models are more natural and powerful than temporally un-
grouped ones. One benefit of our approach is that it greatly
reduces the need for coalescing, since an attribute history
is grouped in the data model. Another significant benefit
is the effectiveness of expressing complex temporal queries
with XQuery, as discussed next.

4. TEMPORAL QUERIES IN XQUERY
One key advantage of our approach is that powerful tem-

poral queries can be directly expressed in XQuery.
Table 2 lists common temporal queries which we can sup-

port using XQuery, and SQL queries on relational approaches
(which will be discussed in next two sections).

Due to limit of space, we choose some queries in Table 2
to illustrate the XQuery support.

Q2. Snapshot: find the average salary of employees on 1993-
05-16:

let $s := doc("employees.xml")/employees/employee

/salary[@tstart <="1993-05-16"

and @tend >= "1993-05-16"]

return <avg_salary>{avg($s)}</avg_salary>

Q3. History: find the salary history of employee ‘100002’:

let $s := doc("employees.xml")/employees

/employee[empno=’100002’]/salary

return <salary_history>{$s}</salary_history>

Q5. Temporal slicing: find the number of employees whose
salary was more than 60K between 1993-05-16 and 1994-05-
16:

let $e := doc("employees.xml")/employees/

employee/salary[. >= 60000 and

(@tstart >= "1993-05-16" and

@tstart < "1994-05-16" or

@tend > "1993-05-16" and

@tend <= "1994-05-16")]

return <count>count($e)</count>

Q8. Temporal join: find the average salary in department
‘d001’ on 1990-01-01:

let $s := document("employees.xml")/employees/

employee[deptno[@tstart < "1990-01-01" and

@tend< "1990-01-01"] = "d001"]

/salary[@tstart <="1990-01-01" and

@tend >= "1990-01-01"]

return <avg_salary>{avg($s)}</avg_salary>

5. IMPLEMENTATION: NATIVE XML DBMS
The simplest approach for implementing the archival and

querying approach we have described is to use native XML
DBMSs such as [27, 28], that are fast-maturing into reliable
and easy-to-use systems. These systems are quite different
from commercial OR-DBMS that are now being extended
with XML support, insofar as they only support XML doc-
uments as their logical schema model, and they use text-
oriented storage at the physical level. (A few native XML
DBMSs are instead using DOM trees and OODBMS-based
approaches.)

The smallest logical unit of storage for these systems is
an XML document. However, documents with same schema
can be stored in a collection, and manipulated as a set. All
XML databases support XPath queries, and XQuery are also
supported by vendors such as X-Hive and Tamino. Indexes
can also be built on values, keywords, and names.

Advantages of native XML databases include: i) any XML
node can be preserved; ii) mapping from schema to storage is
not needed; iii) XML documents with any schema (includ-
ing text-centric documents) can be stored; and iv) native
XML query language (e.g., XPath and XQuery) interfaces
are provided.

Our experience with the above mentioned systems was a
pleasant one since we found them easy to learn and conve-
nient to use. For example, with X-Hive, we were able to
load our test-bed (991MB in size) in 10 minutes and started
searching the database with XQuery soon after that. How-
ever, in terms of performance, these systems suffer from the
scalability limitations that will be discussed in Section 9. In
order to address these issues we have investigated the use of
commercial SQL:2003-compliant OR-DBMS and the several
alternative implementation architectures that are available
using these systems. These are discussed next.

6. ARCHIS: MAPPING INTO RELATIONS
In ArchIS (the Archival Information System) (Figure 3),

each H-document is stored in the database as internal H-
tables, and XQuery is mapped into SQL/XML queries based
on the mapping relationships between XML view and these
H-tables. For each table in the current relational database
we build a static key table and several attribute history ta-
bles.

The Static Key Table:

employee_static(empno, tstart, tend)

The static key table basically stores the key and other in-
variant values of each instance, such as name and sex, if

www.manaraa.com

H-tables

Relational data
Current Database

Active rules/
update logs

Temporal data

SQL queries

Temporal queries

XML view

AA
RR
CC
HH
II
SS

Figure 3: ArchIS: Archival Information System

any. Since empno will not change along the history, the pe-
riod (tstart, tend) in the static key table also represents
the valid period of the employee. The use of keys is for easy
joining of all attribute histories of an object such as an em-
ployee.

Attribute History Tables:

employee_salary(empno, salary, tstart,tend)

employee_title (empno, title, tstart,tend)

employee_deptno(empno, deptno, tstart,tend)

An attribute history table is built for each attribute to store
the changing history of such attribute. The values of empno
in the above tables are the corresponding key values, thus
indexes on such empno can efficiently join these relations.

Our design builds on the assumption that keys (e.g., empno)
remain invariant in the history. Otherwise, a system-generated
surrogate key can be used.

Temporal queries supported by XQuery in Section 4 can
be mapped into equivalent SQL/XML statements on H-
tables. The mapping consists in 5 major steps: i) identi-
fication of variable range; ii)generation of join conditions;
iii) generation of the WHERE conditions, iv) translation of
built-in functions, and v) output generation. The detailed
algorithm is discussed in [29]. In the following, we demon-
strate several SQL/XML queries automatically translated
from XQuery:

Q2h. Snapshot: find the average salary of employees on
1993-05-16:

SELECT XMLElement(name ’avg_salary’, s.salary)

FROM employee_salary s

WHERE s.tstart <= DATE ’1993-05-16’

AND s.tend >= DATE ’1993-05-16’;

Q3h. History: find the salary history of employee ‘100002’:

SELECT XMLElement(Name "salary",

XMLAttributes (s.tstart AS "tstart",

s.tend AS "tend"), s.salary)

FROM employee_salary s

WHERE s.empno = ’100002’;

Q5h. Temporal slicing: find the number of employees whose
salary was more than 60K between 1993-05-16 and 1994-05-
16:

SELECT count(s.empno)

FROM employee_salary s

WHERE s.salary >= 60000

AND(s.tstart >= DATE ’1993-05-16’

AND s.tstart < DATE ’1994-05-16’

OR s.tend > DATE ’1993-05-16’

AND s.tend <= DATE ’1993-05-16’);

Q8h. Temporal join: Find the average salary in department
‘d001’ on 1990-01-01:

SELECT avg(s.salary)

FROM employee_salary s, employee_deptno d

WHERE d.deptno = ’d001’

AND d.empno = s.empno

AND d.tstart <= DATE ’1990-01-01’

AND d.tend > DATE ’1990-01-01’

AND s.tstart <= DATE ’1990-01-01’

AND s.tend >= DATE ’1990-01-01’;

The mapping approach here described has been imple-
mented in ArchIS system [30] using the architecture shown
in Figure 3. ArchIS uses lightweight implementation strat-
egy that exploits the simple and well-defined mappings be-
tween our external views and internal relations, achieving
performance better than other generic tools (e.g, [31]) for
translating XQuery into SQL on arbitrary XML-published
RDBMS, which will be discussed in Section 9.1. ArchIS
also supports efficient structuring and tagging of the out-
put using the constructs provided by SQL/XML [32, 22].
Temporal clustering, compression, and other advanced fea-
tures implemented in ArchIS were discussed in [30], and are
outside the scope of this paper.

7. USING NESTED TABLES
Nested relations are part of the latest SQL:2003 stan-

dards, and are also supported by some commercial database
vendors [20, 21]. A temporally grouped representation, sim-
ilar to that used with XML, can be exactly represented by
nested relational schema. Based on such nested tables, tem-
poral queries can be written by SQL:2003, without any ex-
tension to its current standards.

For instance, for our employee history example, we can
use the following schema containing the nested table (H-
table for short, or H-view if it is a nested view) n employee:

CREATE TYPE salary_typ AS OBJECT(
salary NUMBER(7),
tstart DATE,
tend DATE);
CREATE TYPE salary_tbl AS TABLE OF
salary_typ;
...
CREATE TABLE
n_employee(
empno VARCHAR2(8),
tstart DATE,
tend DATE,
n_salary salary_tbl,
n_title title_tbl,
n_deptno deptno_tbl)
NESTED TABLE n_salary STORE AS n_salary,
NESTED TABLE n_title STORE AS n_title,
NESTED TABLE n_deptno STORE AS n_deptno;

Temporal queries supported by XQuery in Section 4 are
now written by SQL:2003 as follows.

www.manaraa.com

Q2n. Snapshot: find the average salary of employees on
1993-05-16:

SELECT avg(s.salary)

FROM n_employee e, TABLE(e.n_salary) s

WHERE s.tstart <= DATE ’1993-05-16’

AND s.tend >= DATE ’1993-05-16’;

Q3n. History: find the salary history of employee ‘100002’:

SELECT s.salary, s.tstart, s.tend

FROM n_employee e, TABLE(e.n_salary) s

WHERE e.empno = ’100002’;

Q5n. Temporal slicing: find the number of employees whose
salary was more than 60K between 1993-05-16 and 1994-05-
16:

SELECT count(e.empno)

FROM n_employee e, TABLE(e.n_salary) s

WHERE s.salary >= 60000

AND (s.tstart >= DATE ’1993-05-16’

AND s.tstart < DATE ’1994-05-16’

OR s.tend > DATE ’1993-05-16’

AND s.tend <= DATE ’1993-05-16’);

Q8n. Temporal join: Find the average salary in department
‘d001’ on 1990-01-01:

SELECT avg(es.salary)

FROM n_employee e, TABLE(e.n_salary) es,

TABLE(e.n_deptno) ed

WHERE ed.deptno = ’d001’

AND ed.tstart <= DATE ’1990-01-01’

AND ed.tend > DATE ’1990-01-01’

AND es.tstart <= DATE ’1990-01-01’

AND es.tend >= DATE ’1990-01-01’;

Although they are not supported by all vendors, the nested
table schemas provide a natural middle ground between XML
and the traditional relational databases.

8. OR-DBMS EXTENSIONS FOR XML
OR-DBMS vendors are extending current technology to

support XML through the SQL/XML initiative [32, 22].
SQL/XML publishing functions can now publish XML docu-
ments directly from SQL queries, and a new data type XML-
Type is used to store XML documents. The XMLType can
use two kinds of storage, unstructured storage with CLOB
for any type of XML documents (normally for text-centric
XML documents), and structured storage for well structured
XML documents.

Only the structured storage approach is of interest for
our problem. In this approach, documents are ‘shredded’
into a set of tables, whereby the indexing and optimiza-
tion techniques developed for queries on relational tables
can now be used for XML. Different solutions are being
pursued by different vendors. For instance, in Oracle XML
DB [33], an XML document is decomposed into a set of
“hidden” index-organized nested tables by adding mapping
annotations in the XML Schema of the documents. To man-
age our H-documents with this system, we first created the
XML Schema for employees documents, and then register
the schema in the database. As a result of this opera-
tion, mapping rules are generated automatically from XML
Schema and nested tables. The employees table is created
by the following statement:

CREATE TABLE employees of xmltype xmlschema

"http://localhost:8080/public/employees.xsd"

element "employees";

While XPath queries are supported in the current release
of the system, XQuery is not. Complex temporal queries
can however be specified through a combination of SQL and
XPath. Two example queries are shown as follows:

Q2r. Snapshot: find the average salary of employees on
1993-05-16:

SELECT avg(extractValue(value(s),’/salary/text()’))

FROM employees e,

TABLE(XMLSequence(extract(value(e),

’/employees/employee/salary[@tstart <= "1993-05-16"

and @tend >="1993-05-06"]’))) s;

Q3r. History: find the salary history of employee ‘100002’:

SELECT extract(value(e),’/employees/employee/salary’)

FROM employees e

WHERE existsNode(value(e),

’/employees/employee[empno="100002"]’) = 1;

Q5r. Slicing: find the number of employees whose salary
was more than 60K between 1993-05-16 and 1994-05-16:

SELECT count(extractValue

((extract(value(s),’/employee’))

FROM employees e,

TABLE (XMLSequence(extract(value(e),

’/employees/employee[salary/text() >= 60000

and (salary/@tstart >= "1993-05-16"

and salary/@tstart < "1994-05-16"

or salary/@tend < "1993-05-16"

and salary/@tend >="1990-01-01")]’))) s;

Observe that XPath expressions can be used through the
extract and extractValue functions.

Q8r. Temporal join: Find the average salary in department
‘d001’ on 1990-01-01:

SELECT avg(extractValue

((extract(value(s),’/salary/text()’))

FROM employees e,

TABLE (XMLSequence(extract(value(e),

’/employees/employee[deptno = "d001"

and deptno/@tstart <= "1990-01-01"

and deptno/@tend >="1990-01-01"]

/salary[@tstart <= "1990-01-01"

and @tend >="1990-01-01"]’))) s;

While the situation is fast improving, the XML extensions
provided by commercial vendors leave a lot to be desired, as
illustrated by the lack of XQuery and other problems we
encountered with Oracle XML DB[33]. For instance, the
nested tables automatically generated are hidden from users,
and indexes on them are not easy to generate. (Indexes
can only be built after those tables are found by searching
among the system tables.) Even when introduced, indexes
might be ignored by the optimizer, which frequently neglects
them and ends up choosing a very inefficient query plan.
These problems are limited to XML extensions, and suggest
a lack of maturity and robustness in such extensions. Due
to these problems and the lack of direct support for XQuery,
no performance results will be reported for this approach.

www.manaraa.com

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

1

10

100

 X-Hive XML DB

 ArchIS
 Nested tables with heap tables
 Nested tables with IOT

Seconds >500

Figure 4: Performance of different schemes for archiving relational database history

9. PERFORMANCE RESULTS
We investigate the performance of the following four sys-

tems for archiving RDBMS database history: i) ArchIS; ii)
nested tables, with nested tables stored as heap tables; iii)
nested tables, with nested tables stored as index organized
tables; iv) native XML database X-Hive/DB.

We use a simulated temporal data set from the history
of 900,000 employees over 17 years. The data set models
increases of salaries, changes of titles, and changes of de-
partments. The total size of the published XML documents
from the history data is 991MB.

The experiments are performed on a Pentium IV 3GHz
PC with Windows XP Professional, 512MB memory and a
200GB ATA hard drive. The DBMSs we use are the latest
release of major commercial database server.

We run the queries from Table 2 for the experiments.
Proper indexes are built for each scheme for best perfor-
mance.

Figure 4 shows the performance comparison among the
four systems1. ArchIS shows performance advantage over
all other approaches. Especially, the performance advantage
on ArchIS over native XML DB is most significant. For
example, Q2 is 9.5 times faster on ArchIS than on X-Hive,
Q3 4.5, Q4 4.5, Q5 12.8, Q6 4.4, Q8 10, and Q9 8.4 times
faster. Q7 on X-Hive even runs “out of the top”.

ArchIS also wins over heap-based nested tables (index-
organized one is even much slower than heap-based nested
one). However, queries on nested tables often require more
joins which can lead to slow performance for join queries.
For example, Q8 and Q9 run “out of the top” on nested
tables.

Nested tables based approach has considerable performance
advantage over native XML DB on queries Q1-Q7, except

1Queries reaching the top line of the graph are more than 500
seconds and run out of physical memory.

for queries Q8 and Q9, which require joins between child
tables.

Overall, ArchIS is clearly the winner of all these approaches.

9.1 XTABLES
We have also explored the use of XTABLES [31] - a gen-

eral XML-view based approach - in supporting our tempo-
rally grouped historical views on the stored H-tables. Using
XTABLES, users can query the history of database relations
using only commercially available software, with no need to
install ArchIS. However, this approach also encounters sev-
eral limitations. The first is that ArchIS’ library of special
functions designed for temporal queries can not be easily in-
corporated. Thus some temporal queries will become harder
to express and less efficient to execute. The second problem
is that even the queries that can be easily expressed without
any function from the temporal library become significant
less efficient to compile and execute.

Figure 5 (a) and (b) show the ratios of the query execu-
tion time and translation time of XTABLES over ArchIS
respectively. (Queries Q6 and Q7 are ignored since XTA-
BLES “run out of the top” for these two queries.) The
average query translation cost for XTABLES is 4.8 seconds,
about 100 times slower than that of ArchIS. Furthermore,
the translated queries with XTABLES are quite complex
and often not optimized, which lead to slower performance.
Figure 5 (a) shows that all queries are slower on XTABLES
than on ArchIS, especially for Q1 and Q3, which are more
than 13 times slower.

Naturally, these queries were executed on a DBMS that
supports XTABLES, rather than the DBMS that support
nested relations which was used in the experiments shown
in Figure 4.

However the performance of the two systems in running
the SQL queries on base relations is close enough to con-
clude that the drop in performance is due to the translation

www.manaraa.com

Q1 Q2 Q3 Q4 Q5 Q8 Q9

20

40

60

80

100

120

Tr
an

sl
at

io
n

C
os

t R
at

io
 (X

Ta
bl

e/
A

rc
hI

S
)

(b)
Q1 Q2 Q3 Q4 Q5 Q8 Q9

0

2

4

6

8

10

12

14

Q
ue

ry
 C

os
t R

at
io

 (X
Ta

bl
e/

A
rc

hI
S

)

(a)

Figure 5: Comparison of query execution and translation cost between XTABLES and ArchIS: (a) query cost
ratio; (b) translation cost ratio

from XQuery to SQL queries, rather than the different per-
formance of the two DBMS in executing SQL queries.

Therefore the highly specialized XML-publishing and view-
support mechanisms provided by ArchIS are significantly
more efficient than the very general ones provide by systems
such as XTABLES.

10. CONCLUSION
XML provides a powerful environment for publishing and

querying not only the current content of relational databases
but also their histories. This is because XML is effective at
representing and querying temporal information due to its
ability to support a temporally grouped data model and a
powerful extensible language such as XQuery. Thus effective
temporal representations can be achieved in XML without
requiring changes in the current standards—an important
point since the temporal database experience has shown that
this would be an uphill battle.

In general, we found that temporal information, that a
long stream of database research [2] proved difficult for re-
lational databases and its query languages, can now be han-
dled quite naturally using XML and its query languages.
The significance of this finding is underscored by the fact
that the solution is quite general, and it is also effective at
representing and querying the evolution history of multi-
version XML documents. In [34], we have shown how the
history of multi-version documents can be represented by
simply timestamping their elements with their time span,
and using queries similar to those used on the histories of
relational tables. The approach has been applied success-
fully to real-life XML documents, such as the UCLA course
catalog, the CIA World FactBook and W3C standard spec-
ifications. Therefore, we have a solution that is general and
very flexible, since it can be customized via different tem-
poral libraries.

While XML is clearly preferable at the logical level, it is
clear that relational databases are still preferable in terms
of performance and scalability. Indeed we investigated four
alternative solutions that use: i) Native XML DBMS, ii)
Flat relational tables and SQL/XML, iii) SQL:2003 nested
tables, and iv) OR-DBMS extended with XML support.

The approach of shredding the historical views into re-
lational tables proved to be the overall winner, in terms of
performance and reliability. Relational tables win over other
approaches, in which the running times of some of their
queries went ‘through the roof’. Our experiments showed
that nested tables only slightly improved performance on
one query.

In many applications performance and scalability do not
represent pressing issues. This is, for instance, the case
of the real-life examples studied in [34] where native XML
databases proved effective at managing multi-version XML
documents and answering complex queries on them. In [34]
we demonstrated our approach on several interesting doc-
uments, including the UCLA course catalog, and the CIA
World FactBook [35], and the W3C XLink specifications
[36]. These documents happened to be only a few megabytes
in size, and native XML databases support them efficiently.
Our experiments, however, show that the approach of sup-
porting logical historical XML views as stored relational ta-
bles is clearly the best, since it combines the advantages of
XML at the logical level, with the better performance of
relational tables at the physical level.

In the course of this research we had an opportunity to
experiment with the XML extensions now being introduced
by database vendors. At the time of this writing, these XML
extensions are not very mature, and need more time before
they become robust and efficient. Even so, it is not clear
whether they will ever be able to outperform our mapping
into relational tables and SQL/XML, that we designed and
optimized for this specific application. Indeed, we conjecture
that the ArchIS architecture shown in Figure 3 will remain
the solution of choice for archiving, publishing and querying
the history of relational databases.

11. REFERENCES
[1] R. T. Snodgrass. Developing Time-Oriented Database

Applications in SQL. Morgan Kaufmann, 1999.

[2] G. Ozsoyoglu and R.T. Snodgrass. Temporal and
Real-Time Databases: A Survey. IEEE Transactions
on Knowledge and Data Engineering, 7(4):513–532,
1995.

www.manaraa.com

[3] J. Clifford, A. Croker, F. Grandi, and A. Tuzhilin. On
Temporal Grouping. In Recent Advances in Temporal
Databases, pages 194–213. Springer Verlag, 1995.

[4] XQuery 1.0: An XML Query Language.
http://www.w3.org/XML/Query.

[5] S. Kepser. A Proof of the Turing-Completeness of
XSLT and XQuery. In Extreme Markup Language,
2004.

[6] F. Grandi and F. Mandreoli. The Valid Web: An
XML/XSL Infrastructure for Temporal Management
of Web Documents. In ADVIS, 2000.

[7] T. Amagasa, M. Yoshikawa, and S. Uemura. A Data
Model for Temporal XML Documents. In DEXA,
2000.

[8] C.E. Dyreson. Observing Transaction-Time Semantics
with TTXPath. In WISE, 2001.

[9] S. Zhang and C. Dyreson. Adding Valid Time to
XPath. In DNIS, 2002.

[10] D. Gao and R. T. Snodgrass. Temporal Slicing in the
Evaluation of XML Queries. In VLDB, 2003.

[11] P. Buneman, S. Khanna, K. Tajima, and W. Tan.
Archiving scientific data. TODS, 29(1):2–42, 2004.

[12] R. T. Snodgrass. The TSQL2 Temporal Query
Language. Kluwer, 1995.

[13] J. Chomicki, D. Toman, and M.H. Böhlen. Querying
ATSQL Databases with Temporal Logic. TODS,
26(2):145–178, June 2001.

[14] C. Zaniolo, S. Ceri, C.Faloutsos, R.T. Snodgrass, V.S.
Subrahmanian, and R. Zicari. Advanced Database
Systems. Morgan Kaufmann Publishers, 1997.

[15] A. Steiner. A Generalisation Approach to Temporal
Data Models and their Implementations. PhD thesis,
ETH Zurich, 1997.

[16] Oracle Flashback Technology.
http://otn.oracle.com/deploy/availability
/htdocs/flashback overview.htm.

[17] D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov,
R. Wang, and Y. Zhu. Transaction Time Support
Inside a Database Engine. In ICDE, 2006.

[18] F. Wang and C. Zaniolo. Publishing and Querying the
Histories of Archived Relational Databases in XML.
In WISE, 2003.

[19] Database Languages SQL, ISO/IEC 9075-*:2003.

[20] SQL 2003 Standard Support in Oracle Database 10g,
otn.oracle.com /products/database/
application development/pdf/SQL 2003 TWP.pdf.

[21] Informix Universal Server.
http://www.ibm.com/informix.

[22] ISO. Information technology - Database languages -
SQL Part 14: XML-Related Specifications. 2003.

[23] C. S. Jensen and D. B. Lomet. Transaction
Timestamping in Temporal Databases. In VLDB,
2001.

[24] M. H. Böhlen, R. T. Snodgrass, and M. D. Soo.
Coalescing in Temporal Databases. In VLDB, 1996.

[25] J. Clifford. Formal Semantics and Pragmatics for
Natural Language Querying. Cambridge University
Press, 1990.

[26] J. Clifford, A. Croker, and A. Tuzhilin. On
Completeness of Historical Relational Query
Languages. TODS, 19(1):64–116, 1994.

[27] X-Hive/DB. http://www.x-hive.com.

[28] Tamino XML Server. http://www.tamino.com.

[29] F. Wang, X. Zhou, and C. Zaniolo. Using XML to
Build Efficient Transaction-Time Temporal Database
Systems on Relational Databases. Technical
Report 81, TimeCenter, www.cs.auc.dk/TimeCenter,
Mar. 2005.

[30] ArchIS: the Archival Information Systems Project.
http://wis.cs.ucla.edu/projects/archis/index.html.

[31] J.E. Funderburk, G. Kiernan, J. Shanmugasundaram,
E. Shekita, and C. Wei. XTABLES: Bridging
Relational Technology and XML. IBM Systems
Journal, 41(4), 2002.

[32] SQL/XML. http://www.sqlx.org.

[33] Oracle XML. http://otn.oracle.com/xml/.

[34] F. Wang, X. Zhou, C. Zaniolo, and H. Moon.
Managing Multi-version Documents and Historical
Databases: a Unified Solution Based on XML. In
WebDB, 2005.

[35] CIA. the world factbook.
http://www.cia.gov/cia/publications/factbook.

[36] W3C. XML Linking Language (XLink).
http://www.w3.org/TR/xlink/.

